MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2019

Calculator-free

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

CALCULATOR-FREE

Section One: Calculator-free

Question 1 (a)	(1 marks
Solution	
Sum of the degrees of the vertices $=12$	
Marking key/mathematical behaviours	Marks
calculates correct sum value	1

Question 1 (b)

Solution	
Edge EC and EA	
Marking key/mathematical behaviours	
 correctly identifies BOTH edges that form a bridge 	1

Question 1 (c)

Solution	
C-E-B-F-D-E or vice versa	
A - E - B - F - D - E	
Marking key/mathematical behaviours	
 identifies a walk with 5 edges 	1
given walk contains a cycle	1

Question 1 (d)

Solution	
$ \begin{array}{cccc} E & F \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	
Marking key/mathematical behaviours	
 correctly identifies TWO groups as ABCD and EF 	1
correctly draws at least 4 edges	1
correctly draws all edges	1

(2 marks)

(3 marks)

(1 marks)

(50 Marks)

(1	marks)

Question 2 (a)

identifies that the Y samples both produce roughly the s
of rating S, while the X samples are more varied.
identifies the 'combined ratings' as the sum of the three

states that the Y samples produce the higher ratings •

Question 2 (d)

Page 3

Yes	
Because both of the Y samples produce roughly the same proportion of responses for each	
category, where as the sample X responses are not proportionally consistent.	
Marking key/mathematical behaviours	Marks
states, Yes	1
 refers to proportional consistency (or equivalent idea, however 	
expressed)	1

Solution

Condition	
Rate how well you like Company ABC's new website using the categories	
VWL: very well liked, WL: well liked, S: satisfactory, UL: un-liked, VUL: very un-liked	
Marking key/mathematical behaviours	Marks
 asks respondents to rate the website and provides an appropriate scale 	1

Solution

Question 2 (b)

A = 7

Question 2 (c)	(3 mar
one mark for each correct answer provided	1+1+1
Marking key/mathematical behaviours	Marks
C = 100%	
$B = \frac{124}{400} \times 100 = 31\%$	

Solution

Ques

(i)	(i) Samples Y produced a proportionally consistent rating of satisfactory, both of	
	around 30%, while the two X samples produced proportionally more va	aried ratings
	of satisfactory.	
(ii)	(ii) Samples Y both produced combined ratings of VWL, WL and S that were higher	
	than the combined rating of the same 3 categories for the two X samp	les.
rking	king key/mathematical behaviours Marks	
•	identifies that the Y samples both produce roughly the same proportion	

(ii) Samples Y both produced combined ratings of VWL, WL and S that were higher than the combined rating of the same 3 categories for the two X samples.	
Marking key/mathematical behaviours	Marks
 identifies that the Y samples both produce roughly the same proportion 	
of rating S, while the X samples are more varied.	1
 identifies the 'combined ratings' as the sum of the three 	1

Solution

(3 marks)

'ks)

1

Question 3 (a)

(4 marks)

Solution	
(i) Graphs 1 and 3	
(ii) Graph 3	
(iii) Graph 2 is a digraph. Digraphs can be identified by the lack of symmetry across the	
leading diagonal.	
Marking key/mathematical behaviours Marks	
 identifies BOTH graphs containing loop 	1
 identifies graph 3 having the isolated vertex 	1
 identifies Graph 2 as a digraph 	1
 refers to no symmetry AND leading diagonal 	1

Question 3 (b)

(5 marks)

Question 4 (a)

Solution	
$1 = \frac{38 - 5n}{3}$	
3 = 38 - 5n	
5n = 35	
n = 7 is an integer	
\therefore 1 is a term of the sequence and it is the seventh term	
Marking key/mathematical behaviours	Marks
substitutes 1 into the formula	1
 rearranges and solves the equation for n 	1
• states $T_7 = 1$	1

Question 4 (b)

Γ

(3 marks)

1

Solution	
$a+3d = 11 \dots (1)$ $a+15d = 35 \dots (2)$ (2)-(1) results in 12d = 24 $\therefore d = 2 \text{ and } a = 5$ Hence, $T_n = 5+2(n-1)$ $T_n = 2 \dots + 2$	
$I_n = 2n + 5$ Marking key/mathematical behaviours	Marke
T uses T and T to form two equations	1
 uses <i>r</i>₄ and <i>r</i>₁₆ to form two equations solves the two simultaneous equations correctly for "a" and "d" values states the nth term correctly 	1

Solution	
The number of crimes in suburb B $(y) = 1.7086 \times 3010 + 3555 \approx 8698 (\sim 8700)$	
Marking key/mathematical behaviours	Marks
 applies the provided linear prediction formula correctly 	1
 calculates the correct result, rounding appropriately 	1
 if uses the graph to give a rough estimate – allow 1 mark only (for a reasonable predicted figure) 	

Solution
The relationship is a strong linear and positive one.
The trend line provided appears to be a 'good fit' and the coefficient of determination of
0.6567 implies a correlation coefficient of \sim 0.8 which is quite strong.

Marking key/mathematical behaviours	Marks
 uses at least two of the words the words, linear, strong and positive 	1
 refers to the coefficient of determination (R²) 	1
 states and refers to the correlation coefficient of ~ 0.8 	1

Solution

Question 5 (b)

Question 5 (a)

2013-14	
Suburb A recorded 1819 crimes while Suburb B recorded 8616.	
Suburb B had a significantly higher number of crimes than would have been expe	ected based
on the more highly correlated relationship of the other years.	
Marking key/mathematical behaviours	Marks
identifies the correct year	1
 provides a plausible interpretation 	1

• provides a plausible interpretation

Question 5 (c)

Question 5 (c)	(2 marks)
Solution	
The best estimate is 0.8	
Since $r = \sqrt{R^2} = \sqrt{0.6567} \simeq 0.8$	
Marking key/mathematical behaviours	Marks
selects the correct estimate	1
 uses the coefficient of determination correctly to justify the selection 	1

Question 5 (d)

© MAWA 2019

CALCULATOR-FREE MARKING KEY

(3 marks)

(2 marks)

CALCULATOR-FREE MARKING KEY

Question 5 (e)

Solution	
Low reliability, because while it is interpolation in terms of the range of crime figures known, it	
is a prediction into the future and other unknown and possibly confounding factors could	
have played a part in influencing the crime numbers in Suburb B.	
Marking key/mathematical behaviours	
 states that the prediction is questionable or has low reliability 	1
 provides a plausible explanation, consistent with answer about the 	
reliability	1

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION Question 6 (a)

Solution	
Substitute $V_3 = 24200$ into $V_n = a \times r^{n-1}$ resulting in	
$V_3 = 20000 \times r^{3-1}$	
i.e. $24200 = 20000r^2$	
$r^2 - 24200$	
$7 - \frac{1}{20000}$	
$r^2 - \frac{121}{r^2}$	
$r = \frac{1}{100}$	
$r = \frac{11}{1}$	
$V = \frac{1}{10}$	
r=1.1	
Marking key/mathematical behaviours	Marks
• substitutes $V_3 = 24200$ into $V_n = 20000 \times r^{n-1}$	1
 solves for correct "r" value of 1.1 	1

Question 6 (b)

Solution	
Increasing exponentially	
Marking key/mathematical behaviours	Marks
identifies increasing	1
 identifies increasing exponentially 	1

Question 6 (c)

(2 marks)

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION Question 6 (d)

Solution $V_{n+1} = V_n \times 1.1$, $V_1 = 20000$ Marking key/mathematical behavioursMarks• states the correct recurrence relation1• states the value of V_1 1